Positron confinement in embedded lithium nanoclusters

نویسندگان

  • M. A. van Huis
  • P. E. Mijnarends
  • J. Kuriplach
چکیده

Quantum confinement of positrons in nanoclusters offers the opportunity to obtain detailed information on the electronic structure of nanoclusters by application of positron annihilation spectroscopy techniques. In this work, positron confinement is investigated in lithium nanoclusters embedded in monocrystalline MgO. These nanoclusters were created by means of ion implantation and subsequent annealing. It was found from the results of Doppler broadening positron beam analysis that approximately 92% of the implanted positrons annihilate in lithium nanoclusters rather than in the embedding MgO, while the local fraction of lithium at the implantation depth is only 1.3 at. %. The results of two-dimensional angular correlation of annihilation radiation confirm the presence of crystalline bulk lithium. The confinement of positrons is ascribed to the difference in positron affinity between lithium and MgO. The nanocluster acts as a potential well for positrons, where the depth of the potential well is equal to the difference in the positron affinities of lithium and MgO. These affinities were calculated using the linear muffin-tin orbital atomic sphere approximation method. This yields a positronic potential step at the MgOiLi interface of 1.8 eV using the generalized gradient approximation and 2.8 eV using the insulator model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Engineering microencapsulation of highly catalytic gold nanoclusters for an extreme thermal stability.

A synthetic strategy for the microencapsulation of ultra-small gold nanoparticles toward the development of a novel nanoreactor is reported. In this case, it is shown that the catalytic activity of Au nanoclusters as small as 0.8 nm remains unaffected after a thermal treatment up to 800 °C in air. This is accomplished through the deposition and further coating of the gold nanoparticles in a voi...

متن کامل

In situ synthesis of hierarchical CoFe2O4 nanoclusters/graphene aerogels and their high performance for lithium-ion batteries.

In this article, we demonstrate a simple solvothermal method towards in situ growth of hierarchical CoFe2O4 nanoclusters on graphene aerogels (GAs). SEM and TEM results confirm that CoFe2O4 nanoclusters are well wrapped by the graphene skeleton. As an anode material for lithium-ion batteries, the CoFe2O4/GAs composite displays a stable cycling performance with a reversible capacity of over 100 ...

متن کامل

Mesoporous Li4Ti5O12 nanoclusters anchored on super-aligned carbon nanotubes as high performance electrodes for lithium ion batteries.

Mesoporous lithium titanate (LTO) nanoclusters are in situ synthesized in a network of super aligned carbon nanotubes (SACNTs) via a solution-based method followed by heat treatment in air. In the LTO-CNT composite, SACNTs not only serve as the skeleton to support a binder-free electrode, but also render the composite with high conductivity, flexibility, and mechanical strength. The homogeneous...

متن کامل

Origin of the core-level binding energy shifts in Au nanoclusters

We investigate the shifts of the core-level binding energies in small gold nanoclusters by using ab initio density-functional-theory calculations. The shift of the 4f states is calculated for magic-number nanoclusters in a wide range of sizes and morphologies. We find a nonmonotonous behavior of the core-level shift in nanoclusters depending on the size. We demonstrate that there are three main...

متن کامل

In situ preparation of 3D graphene aerogels@hierarchical Fe3O4 nanoclusters as high rate and long cycle anode materials for lithium ion batteries.

We describe a novel strategy for in situ fabrication of hierarchical Fe3O4 nanoclusters-GAs. Fe3O4 NCs-GAs deliver excellent rate capability (the reversible capacities obtained were 1442, 392 and 118 mA h g(-1) at 0.1C, 12C and 35C rates), and a high reversible capacity of 577 mA h g(-1) over 300 cycles at the current density of 5.2 A g(-1) (6C).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002